In vivo human crystalline lens topography
نویسندگان
چکیده
Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from -0.04 to -1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism ([Formula: see text] ranging from -11 to -1 µm) and the posterior lens showing vertical astigmatism ([Formula: see text] ranging from 6 to 10 µm).
منابع مشابه
Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.
PURPOSE Measurement of crystalline lens geometry in vivo is critical to optimize performance of state-of-the-art cataract surgery. We used custom-developed quantitative anterior segment optical coherence tomography (OCT) and developed dedicated algorithms to estimate lens volume (VOL), equatorial diameter (DIA), and equatorial plane position (EPP). METHODS The method was validated ex vivo in ...
متن کاملA bio-inspired polymeric gradient refractive index (GRIN) human eye lens.
A synthetic polymeric lens was designed and fabricated based on a bio-inspired, "Age=5" human eye lens design by utilizing a nanolayered polymer film-based technique. The internal refractive index distribution of an anterior and posterior GRIN lens were characterized and confirmed against design by µATR-FTIR. 3D surface topography of the fabricated aspheric anterior and posterior lenses was mea...
متن کاملAge-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens
PURPOSE To develop an age-dependent mathematical model of the zero-order shape of the isolated ex vivo human crystalline lens, using one mathematical function, that can be subsequently used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. METHODS Profiles of whole isolated human lenses (n=30) aged 2...
متن کاملQualitative effect of zonular tension on freshly extracted intact human crystalline lenses: implications for the mechanism of accommodation.
PURPOSE To determine the topographic effects of zonular tension on the anterior surface of the human crystalline lens. METHODS Real-time topography of the anterior surface of seven fully relaxed, freshly extracted intact, clear, human crystalline lenses aged 3, 17, 45, 54, 54, 56, and 56 years was qualitatively obtained before, during, and after the application of zonular traction. Zonular tr...
متن کاملChange in shape of the aging human crystalline lens with accommodation
The objective was to measure the change in shape of the aging human crystalline eye lens in vivo during accommodation. Scheimpflug images were made of 65 subjects between 16 and 51 years of age, who were able to accommodate at least 1D. The Scheimpflug images were corrected for distortion due to the geometry of the camera and the refraction of the cornea and anterior lens surface, which is nece...
متن کامل